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COLLISIONLESS SLOWING DOWN OF NOVA AND SUPERNOVA SHELLS IN
MAGNETIZED INTERSTELLAR MEDIUM

D. A. Osipyan, H. B. Nersisyan, and H. H. Matevosyan UDC:524.35

The collisionless interaction of an expanding plasma cloud with a magnetized background plasma is examined
in the framework of a 3D kinetic-hydrodynamic model.  The slowing down of a hydrogen cloud is studied for
high Alfven-Mach numbers and magneto-laminar interaction parameters.  A particle-in-cell method is used
to study the dynamics of the magnetic field, plasma cloud, background plasma, and collisionless shock wave
generated by the intense particle flux.  A numerical simulation is consistent with the nonstationary interactions
between the plasma shells formed during nova and supernova explosions and the interstellar plasma medium.
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1. Introduction

The problem of the interaction rarefied plasma flows with a surrounding background magnetized plasma arises

during research on the dynamics of solar flares and on the flow of the solar wind around the earth�s magnetosphere, in

active experiments with plasma clouds in space, and in the course of interpreting a number of astrophysical observations

[1-6].  Research on this problem is of considerable interest in connection with experiments on controlled thermonuclear

fusion [7,8] and laboratory simulations of laser plasmas in external magnetic fields [3,9].

Phenomena of this sort, of course on substantially higher energy and spatial-temporal scales, have recently been

under intense discussion in connection with explosive astrophysical processes, which are characterized by the release of

immense energy and are accompanied by the formation of powerful high-velocity plasma structures� expanding spherical

and annular shells, jets, etc.  According to astrophysical observations and theoretical studies [10], the rather massive shells

ejected during explosions interact strongly with the interstellar medium and with the intergalactic magnetic field.  Thus,

free expansion of the ejected shell of a supernova is possible only in the early stages of its evolution.  Then it is slowed

down with the transfer of energy-momentum to the surrounding plasma background and magnetic field.  The problem
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of the collisionless slowing down of the residue of supernovae was first formulated by Oort [11] and subsequently analyzed

in detail by Shklovskii [12].

The slowing down process is characterized by the radius for slowing down of the cloud by the magnetic field,

R
H
, and the gas dynamic slowing down radius R

~ .  An expression for R
H
 can be obtained by equating the initial kinetic

energy W
0
 of a spherical cloud to the energy of the magnetic field that it pushes out in expanding to radius R

H
 [13], i.e.,

( ) 312
006 HWRH = .  Here H

0
 is the intensity of the unperturbed magnetic field.

As the cloud expands, it draws the background plasma into a combined motion.  Along with this, the mass of

expelled plasma increases.  The radius of the sphere within which the mass of the cloud and that of the background plasma

drawn into the combined motion become equal is referred to as the gas dynamic slowing down radius: ( ) 3143 **mnMR
~ π= ,

where n
*
 and m

*
 are the density and mass of the background plasma ions (�snowplow� model [12]) and M is the mass

of the ejected shell.  Taking -3cm 10.n* ≅ , ¤MM 310−=  ( 33102 ⋅=¤M g  is the mass of the sun), and m
*

 = m
H
 (m

H
 is the

mass of a hydrogen ion) as typical values of the parameters, we obtain 460.R
~ = pc.

The smaller of the radii, R
H
 or R

~ , determines the predominant mechanism for slowing down of the cloud�

magnetic or gas dynamic.  The relationship 32
AH MR

~
R = , where AA VuM 0=  is the Alfven-Mach number (u

0
 is the

initial expansion velocity of the cloud) and **A mnHV π= 40  is the Alfven velocity in the background plasma, implies

that for M
A

 << 1 the cloud loses energy as a result of the deformation and displacement of the magnetic field, while for

M
A

 >> 1 the slowing down is caused by the interaction with the background plasma [14-18].  Since the characteristic

velocities of supernova shells are of order 98
0 1010 ÷≅u cm/s for typical magnetic fields 6

0 103 −⋅≅H G, we find that

50050 ÷≅AM .  Thus, the ejected shells of supernovae can only be slowed down as a result of their interaction with the

background plasma medium; that is, the slowing down is gas dynamic in character.  In this paper, we study this problem

using a hybrid model for the plasma with a numerical simulation employing a particle-in-cell method.

2.  Statement of the problem

An analysis shows that the gas dynamic slowing down can only be ensured by a collisionless laminar (or turbulent)

mechanism [3] associated with the generation of vortical electric fields E
i
 in the leading edge of the cloud or by a

collisional mechanism owing to pairwise collisions of ions from the shell with ions, neutral atoms, and electrons in the

interstellar medium.

We begin by briefly examining the effects of pairwise collisions, based on an analysis of Refs. 19 and 20.  The

ions in the cloud lose their energy and transfer it to the ions in the background plasma in multiple Coulomb ion-ion or

ion-electron scattering events with a mean free path given by

( ) , 
ln1

1

2 4

22
0

Λ+π









=λ

enZZmm

mu

***
ii (1)

or ( )( ) ii*eie mmmm λ+=λ 1 , respectively, and in screened Coulomb repulsions with a mean free path given by
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Here Z and Z
*
 are the charges of the background and cloud ions, S and S

*
 are the charges of the nuclei in the cloud and

background (in a hydrogen plasma Z=S=1), a
0
 is the Bohr radius, Λln  is the Coulomb logarithm of the background

plasma, and m is the mass of the cloud ions.  As for screened polarization nuclear attraction processes, they are of no

importance here since the mean free path for that process under astrophysical conditions is enormously greater than iiλ

and iNλ  [19,20].  Note also, that Eqs. (1) and (2) have been obtained for conditions such that the magnetic field does

not influence the Coulomb scattering process.  In fact, for 6
0 103 −⋅≅H G, 10.n* ≅ cm-3, and H* mm =  (hydrogen plasma),

we obtain the following estimates for the electron cyclotron and plasma frequencies: 41081 ⋅=ω .pe s-1 and

1103 3 <<⋅≅ωω −
pece , which is the condition for applicability of Eqs. (1) and (2).

We now estimate the mean free paths for these collisional processes during propagation of supernova residues at

a characteristic velocity u
0
=109 cm/s through the interstellar medium in the case of hydrogen shell and background

plasmas with an electron temperature on the order of T
e

 = 1 eV ( 25ln ≅Λ ) and with the parameter values given above.

The gas dynamic slowing down radius for a typical supernova is ...pc.., while Eqs. (1) and (2) imply that 460.R
~ = pc,

510752 ⋅=λ .ii pc, and 310153 ⋅=λ .iN pc.  These estimates imply that collisional processes cannot slow the cloud down,

since ieR
~ λ<< , iNλ , and iiλ .  Thus, it is important to examine collisionless mechanisms for this interaction.

The first group of collisionless interaction mechanisms are collective turbulent mechanisms (anomalous viscosity,

anomalous resistivity) during the development of ion-ion or electron-ion beam instabilities [21].  The condition for

excitation of the ion-ion instability has the form [22] 
222

0 2 sA cVu +≤  or

, 
2

1
2

2
2

A

s
A

V

c
M +≤ (3)

where *es mTc =  is the ion sound speed in the plasma.  For typical values of the parameters, 610≅sc cm/s

and 6102 ⋅≅AV cm/s.  Thus, according to Eq. (3), M
A

 < 2 and the observed slowing down of the expanding clouds cannot

be caused by turbulent anomalous viscosity, since the characteristic Alfven-Mach number 50050 ÷≅AM .

The second group is the collisionless laminar slowing down mechanism associated with the generation of vortical

electric fields.  It is known that the role of vortical electric fields becomes predominant as M
A
 increases, since 2

Api MEE ~

[3,6], where E
p
 is the polarization electric field that arises as a result of the drop in the gas dynamic and magnetic pressure

at the boundary of the cloud.  A model for energy exchange between the cloud and the background plasma owing to

the combined effect of the gyrorotation of the ions and the generation of vortical electric fields when M
A

 > 1 (the �magnetic

laminar mechanism� (MLM) for slowing down) has been proposed [14,15].  Analytic solutions for the initial expansion

phase, when only a vortical electric field E
i
 develops, showed that the fraction of energy given up by the cloud is

proportional to ( )2
LRR

~= δ  (the MLM interaction parameter), where R
L
 is the Larmor radius of the cloud ions.  Thus,

the intensity of the collisionless interaction between the cloud and the background plasma is determined by the parameter

δ , as well as by the Alfven-Mach number M
A
.
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3.  Numerical simulation based on a hybrid plasma model

We shall carry out a numerical simulation of the collisionless interaction of a supernova shell with the interstellar

medium using a hybrid plasma model, in which the ion component is described by a Vlasov kinetic equation and the

electron component, by the equations of gas dynamics.  Note that this kind of method has been used extensively

elsewhere.  (See, for example, Refs. 14-18).  This hybrid model is justified by the fact that, because of the slowing down

of the shell, a collisionless shock wave can be generated in the background plasma with hydrodynamic breaking of the

leading edge and formation of a multiflux flow.  Thus, the structure of this sort of supercritical collisionless shock wave

on spatial scales of R
~

R ~  can only be described adequately in terms of a hybrid approximation [6].  Note also, that,

although the approximation of collisionless magnetohydrodynamics is valid for 1>>δ , it is unsuitable for describing the

formation and dynamics of a collisionless shock wave.

The initial system of equations consists of a Vlasov kinetic equation for the ions, the equations of motion and

internal energy for the electron component, and Maxwell�s equations for the electromagnetic field.  In the case of a

hydrogen cloud being slowed down in a hydrogen background plasma this system of equations has the following form:

[ ] , 
1

,0 


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( ) 0,
1

,
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H
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tcc

ne
ei (8)

( ) ( ) ( ) . ,,
1

,,,, ∫∫ ===== vvrvvrvvvr dtf
n

tdtfnnn iiiie (9)

Here E and H  are the electric and magnetic field intensities, m
H
 is the mass of the hydrogen ion, ev , and iv  are the

mass averaged electron and ion velocities, and T
e
 is the electron temperature.  Note that in Eqs. (4)-(6) we have omitted

all the dissipative terms associated with the finite conductivity, viscosity, and thermal conductivity of the plasma.  It is

easy to show that this approximation is satisfied with wide margins under the conditions of expanding plasma shells in

the rarefied interstellar medium.  In fact, for example, we can estimate the characteristic diffusion time for the magnetic

field: 224 cRLm σπ=τ , where σ is the conductivity of the plasma.  This implies that 12 2 >>λ=τ )R
~

(MT iiAm .  Here

0uR
~

T =  is the characteristic slowing down time and iiλ  is given by Eq. (1).  Similar estimates can also be obtained

for the other transport coefficients. In addition, in the Maxwell equations we neglect the displacement current because

of the expansion of the cloud is nonrelativistic.

These approximations form the basis of the hybrid collisionless plasma model employed in this paper.  It should,
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however, be emphasized that, although earlier calculations and simulations have demonstrated the practical realizability

of this laminar interaction mechanism [3], they were carried out only over a fairly narrow range of parameters 4<δ and

10≤AM , while typical supernovae have 1211 1010 ÷≅LR cm and, therefore, ( ) 16142
1010 ÷≅= δ LRR

~
 for 50050 ÷≅AM .

Although numerical simulations with these parameters are not reproducible at the present time and will scarcely be

possible even in the distant future, the numerical simulations in the earlier papers and in this paper do show that, for

sufficiently high values of 10>δ  and 10>AM , the energy loss curves acquire a universal character.  Thus, there is every

reason to suppose that this collisionless interaction mechanism can provide for the slowing down of the ejected shell under

the conditions of a typical supernova.

This universality can easily be grasped if we convert Eqs. (4)-(9) for the hybrid model to dimensionless form using

the following variables:

( ) ( ), ,
1

,,, ei
A

eici
pi

V
~~tt~

c
~ vvvvrr →ω→

ω
→ (10)

( ) , ,,
2

00 AH

e
e

A Vm

T
T
~
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H
H (11)
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3

ciA*
i

*

A
i V

~

n

n
n~t,,f
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ω
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Fvrvr (12)

where piω  and ciω are the ion plasma and cyclotron frequencies.  Then it is easily seen that solutions of Eqs. (4)-(9)

depend  only on the parameter He mm .

Let us consider a two-dimensional, axially symmetric model for the dynamics of a point explosion that forms a

cloud of dense plasma expanding into a magnetized background.

At the initial time t = 0, an explosion occurs at the point r = 0, z = 0 in a cylindrical region rLr ≤≤0 , zz LzL ≤≤−

with a uniform magnetic field ( )00  ,0 ,0 H=H  and filled with a plasma of density n.  The explosion forms a cloud of dense

plasma of radius R
0
 containing N particles with a total kinetic energy W

0
.  At the initial time, the velocity of the ions

in the cloud is distributed linearly along the radius, i.e.,

( )







>

≤
=

. ,0

,
0 ,

0

0
0

RR

RR
R

R
u

Ru
m

(13)

Here 22 zrR +=  is the magnitude of the radius vector in spherical coordinates and u
m
 is the maximum velocity of the

ions in the cloud and is determined by the initial energy W
0
 of the cloud, with ( ) ( ) 21

0
21

0 35310 uNmWu Hm == .

The equation for the conservation of energy in this system has the form
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The total energy of the system consists of the thermal and kinetic energies of the electron gas (the first two terms),

the energy of the magnetic field, and the kinetic energy W
kin

 of the ions.
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The cloud radius R
0
 is considerably smaller than the step size h of the computational grid; that is, we can assume

that at the initial time the cloud is concentrated at a point.  At the initial time t = 0 the background particles are distributed

uniformly over the entire region and the particles in the cloud are distributed uniformly in the cloud.  The unperturbed

values of all quantities are specified at the boundaries of the region r = L
r
 and z = ±L

z
  on the axis r = 0 we have

. 0   , 0 =======
∂

∂
=

∂
∂=

∂
∂

=
∂

∂
=

∂
∂

ϕϕϕ HHEE
r

T

r

n

rr

E

r

H
rreer

eezzz
vv

v

(15)

With these boundary conditions the calculation can be continued until the time the perturbation reaches the

boundary of the region.

The equations of motion for the ions are the equations of the characteristics of the kinetic equation, i.e.,

.
dt

d

dt

d i
i

i F
v

v
r == , (16)

We have used a particle-in-cell technique to solve these equations.  The Maxwell equations and the heat

conduction equation are solved using finite difference resolution schemes.  A more detailed description of the mathematical

model for the process and the numerical simulation algorithm can be found, for example, in Refs. 23-25.

4.  Results of the numerical simulations

Numerical simulations were done using a particle-in-cell method and a study was made of the energy and

dynamical characteristics of the expansion of a hydrogen plasma into a uniform magnetized background hydrogen plasma

at large Alfven-Mach numbers M
A

 = 45.6 for a magnetic-laminar interaction parameter 284.=δ .  We emphasize that, as

noted above, the following results reflect real astrophysical processes only with an accuracy corresponding to the scales

of the resulting curves.

Fig. 1.  The time variation in the energy of the cloud and background plasma for
M

A 
= 45.6 and δ=84.2.  (a)  The variation in the total energy of the background plasma (5)

and cloud (n). (b) The variation in the total thermal energy of the electrons (n) and of the
magnetic field (l), and in the kinetic energy of the electrons (5).
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R
L
 = 2.88 cm 426.R~ = cm R

H
 = 337 cm T = 9.56 µs

H
0
 = 100 G W

0
 = 4.1 . 104 erg u

0
 = 2.76 . 106 cm/s 010

(0)
.Te = eV

n
*
 = 1.3 . 1017 cm-3 V

A
 = 6.05 . 104 cm/s 510589 ⋅=ω .ci s-1 1110744 ⋅=ω .pi s-1

TABLE 1.  Values of the Parameters for the Numerical Simulation (M
A
 = 45.6, 284.=δ )

Fig. 2.  The distribution over R (in cm) of the electromagnetic fields and densities
of the cloud and background plasma for  t = 0.5T,  M

A 
= 45.6, and δ = 84.2 and for two

angles θ . (a) and (b) show the distributions of the r (smooth curve), ϕ  (dashed),

and z (fine dots) components of the electric field for 0=θ  and 090=θ , respectively.
(c) and (d) show the same for the magnetic field.  (e) and (f) show the densities of the

cloud (smooth curves) and background plasma (dotted) for 0=θ  and 090=θ ,
respectively.
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Figure 1 shows plots of the cloud and background energies, and of the variation in magnetic field energy and

electron energy, as functions of time.  The cloud and background energies are normalized to the initial cloud energy W
0

and the time is expressed in units of the gas dynamic slowing down time 0uR
~

T = .  The values of the characteristic

quantities are listed in Table 1, where ( )0
eT  is the initial electron temperature.

For t < T, the energy of the plasma is concentrated mainly in the kinetic energy of the cloud (Fig. 1a).  With the

passage of time, this energy decreases and at t = T, about 50% of the initial cloud energy has been converted to kinetic

energy of the background plasma, which represents slowing down by the MLM (magnetic-laminar mechanism).  The

thermal energy of the electrons has risen by 12% and the magnetic  energy has increased by ~5-6% (Fig. 1b).

Figures 2-4 show plots of the electric and magnetic fields, cloud and background densities, and electron temperature

as functions of R at times t = 0.5T (Figs. 2 and 4a) and t = 1.5T (Figs. 3 and 4b) at angles 0=θ  and 090=θ  to the

Fig. 3.   Same as in Fig. 2, but for t = 1.5T.
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lines of force of the magnetic field.  All of these quantities are normalized in accordance with Eqs. (11) and (12).

As expected, for 0=θ  the electric field is mainly directed along z ( 0== ϕEEr , 0≠zE ) and for 090=θ  its

azimuthal component predominates ( 0=zE , ϕ<< EEr ).  For arbitrary angles θ , the magnetic field is mainly directed

along 0H  ( 0, ≅ϕHHr , 0≠zH ).

The slowing down of the cloud is accompanied by the formation of an axially symmetric layer of compressed

plasma in the background plasma that moves along with the compressed magnetic field; i.e., a collisionless shock wave

develops. The amplitude of the magnetic field at the shock front is 1.6 times the unperturbed value.  The thickness of

the layer is on the order of the ion Larmor radius R
L

 = 2.88 cm, in agreement with an estimate of the thickness of the

collisionless shock wave, LR~∆  [4], for the case of breaking and formation of a multiflux motion.  The plasma cloud

acquires the shape of an almost spherical shell in which almost all the kinetic energy and mass of the initially spherical

cloud is concentrated (Figs. 2 and 3), with the latter being deformed mainly along the direction of the unperturbed

magnetic field 0H .

Background particles are transported out of the expansion region; this leads to the formation of a plasma cavity.

It correlates with the magnetic cavity, a region of radius R
~

~ , in which the magnetic field is lower than the unperturbed

field because it is squeezed out (Figs. 2 and 3).  Thus, there is essentially no electric field in the cavity.  In the initial

phase of expansion (Fig. 2), the amplitude of the azimuthal component ..... is considerably greater than that of the radial

component ϕE ; i.e., rE , 5~max
r

max EEϕ . At time t = 0.5T, the positions of their maxima essentially coincide with the

peak density of the cloud.

With the passage of time, the outer boundary of the region transfers energy to the background plasma through

electromagnetic interactions.  For this reason the distance between the outer boundary of the cloud and the inner boundary

of the collisionless shock wave increases.  At time t = 1.5T the ratio 27.EE max
r

max ~ϕ .  Here the position of maxEϕ  is

essentially the same as the outer boundary of the collisionless shock, and E
r
 is a maximum in the shock front.

Fig. 4.  Distribution over R (in cm) of the electron temperature for M
A 

= 45.6,
δ = 84.2, and t = 0.5T (a) and t = 1.5T (b) for two angles 0è=  (smooth curves) and

o90è=  (dashed curves).
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An electron thermal wave is generated in the plasma along with the collisionless shock.  The spatial distribution

of that wave depends significantly on θ  (Fig. 4).  A layer of electrons heated by the collisionless shock accompanies

the shock wave (compare Figs. 2-4) and is distributed in a way so as to compensate the ion charge of the plasma (see

Eq. (9)).

This model for the expansion of plasma clouds is valid for t < 2T.  At later times the expansion velocity of the

cloud and, therefore, the Alfven-Mach number, decrease and our model fails.  An analysis shows that under those

conditions, the background plasma ions undergo a complicated multiflux motion and quasiperiodic loop structures show

up distinctly in the phase planes.  (The distance between them is ~R
L
.)  These are evidence of the breaking of the wave.

In addition, we might expect that at long expansion times, turbulent slowing down mechanisms will play an important

role.  Studies of these questions are currently under way and the results will be published later.

The authors thank the director of the Computational Physics Laboratory of the Institute of High Temperatures of

the Siberian Branch of the Russian Academy of Sciences, Dr. G. I. Dudnikova for a detailed and critical analysis of our

results, as well as for useful comments.

REFERENCES

1. A. G. Ponomarenko, ed., Physics of Cosmic and Laboratory Plasmas [in Russian], Nauka, Novosibirsk, SO AN SSSR
(1989).

2. V. V. Adushkin, Yu. I. Zetser, Yu. N. Kisilev et al., DAN 331, 486 (1993).
3. Yu. P. Zakharov, A. M. Orishich, and A. G. Ponomarenko, Laser Plasmas and Laboratory Simulation of Nonstationary

Processes in Outer Space [in Russian], Novosibirsk, ITPM SO AN SSSR (1988).
4.  R. Z. Sagdeev, Cooperative processes and shock waves in rarefied plasmas, in: M. A. Leontovich, ed., Reviews of

Plasma Physics, Vol. 4, Consultants Bureau, New York (1966), pp. 23-91.
5. M. M. Leroy, Phys. Fluids 26, 2742 (1983).
6. V. A. Vshivkov, G. I. Dudnikova, Yu. I. Molorodov, and M. P. Fedoruk, Vych. Tekhnologii 2, 5 (1997).
7. V. S. Imshennik, in: K. V. Brushlinksii, ed., Two-dimensional Numerical Models of Plasmas [in Russian], IPM im. M.

V. Keldysha AN SSSR, Moscow (1979), p. 120.
8. A. G. Sgro and C. W. Nielsen, Phys. Fluids 19, 126 (1976).
9. B. A. Bryunetkin, U. Sh. Begimkulov, V. M. Dyakin et al., Kvantovaya Elektronika 19, 246 (1992).

10. T. A. Lozinskaya, Supernova Stars and the Stellar Wind. Interaction with the Galactic Gas [in Russian] (1986).
11. J. H. Oort, Mon. Notic. Roy. Astron. Soc. 106, 159 (1946).
12. I. S. Shklovskii, Supernova Stars and Processes associated with them [in Russian], Nauka, Moscow (1976).
13. Yu. P. Raizer, PMTF, No. 6, 19 (1963).
14. A. I. Golubev, A. A. Solov�ev, and V. A. Terekhin, PMTF, No. 5, 33 (1978).
15. V. P. Bashurin, A. I. Golubev, and V. A. Terekhin, PMTF, No. 5, 10 (1983).
16.  V. A. Vshivkov, G. I. Dudnikova, Yu. P. Zakharov, A. M. Orishich, and A. G. Ponomarenko, A study of collisionless

interaction processes between a plasma cloud and a magnetized background at high Alfven-Mach numbers.  Physics

of cosmic and laboratory plasmas [in Russian], Novosibirsk (1989).
17. Yu. A. Berezin, M. P. Fedoruk, and P. V. Khenkin, Fizika Plazmy 14, 463 (1988).
18. S. T. Surzhikov, Fizika Plazmy 26, 811 (2000).
19. D. W. Koopman, Phys. Fluids 11 (1959 (1972).
20.  Yu. A. Brezin, V. A. Vshivkov, Yu. P. Zakharov et al., Experimental and numerical study of a collisionless ambipolar

mechanism for the interaction of plasma flows in the absence of a magnetic field [in Russian], ITPM SO AN SSSR,
Preprint No. 7-86, Novosibirsk (1986).



444

21. C. S. Wu, D. Winske, Y. M. Zhou et al., Space Sci. Rev. 36, 63 (1983).
22. K. Papadopoulos, J. Geophys. Res. 14, 3806 (1971).
23. Yu. A. Berezin, V. A. Vshivkov, G. I. Dudnikova, and M. P. Fedoruk, Fizika Plazmy 18, 1567 (1992).
24. Yu. A. Berezin and V. A. Vshivkov, Particle-in-cell Methods in Rarefied Plasma Dynamics [in Russian] Nauka,

Novosibirsk (1980).
25. Yu. A. Berezin and M. P. Fedoruk, Mathematical Modelling of Nonstationary Plasma Processes [in Russian], Nauka,

Novosibirsk (1993).


